Nuprl Lemma : implies-is-partition-choice

I:Interval
  (icompact(I)
   (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)).  is-partition-choice(full-partition(I;p);x)))


Proof




Definitions occuring in Statement :  partition-choice: partition-choice(p) is-partition-choice: is-partition-choice(p;x) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) interval: Interval all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q is-partition-choice: is-partition-choice(p;x) partition-choice: partition-choice(p) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s] sq_stable: SqStable(P)
Lemmas referenced :  interval_wf icompact_wf partition_wf partition-choice_wf int_seg_wf equal_wf sq_stable__i-member int_term_value_add_lemma itermAdd_wf false_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermSubtract_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf subtract_wf int_seg_properties full-partition_wf select_wf rccint_wf i-member_wf real_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut applyEquality hypothesisEquality thin lemma_by_obid isectElimination hypothesis sqequalRule lambdaEquality because_Cache independent_isectElimination setElimination rename natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed addEquality introduction independent_functionElimination imageMemberEquality

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).
                is-partition-choice(full-partition(I;p);x)))



Date html generated: 2016_05_18-AM-09_04_02
Last ObjectModification: 2016_01_17-AM-02_33_44

Theory : reals


Home Index