Nuprl Lemma : rcp-perp1
∀[a,b:ℝ^3].  (a⋅(a x b) = r0)
Proof
Definitions occuring in Statement : 
rcp: (a x b), 
dot-product: x⋅y, 
real-vec: ℝ^n, 
req: x = y, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
rcp: (a x b), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
all: ∀x:A. B[x], 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
req_witness, 
dot-product_wf, 
false_wf, 
le_wf, 
rcp_wf, 
int-to-real_wf, 
real-vec_wf, 
radd_wf, 
rmul_wf, 
lelt_wf, 
subtype_rel_self, 
int_seg_wf, 
real_wf, 
rsub_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_functionality, 
r3-dot-product, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[a,b:\mBbbR{}\^{}3].    (a\mcdot{}(a  x  b)  =  r0)
 Date html generated: 
2018_05_22-PM-02_43_07
 Last ObjectModification: 
2018_05_09-PM-02_08_17
Theory : reals
Home
Index