Nuprl Lemma : real-matrix-times_functionality
∀[n,a,b:ℕ]. ∀[A1,A2:ℝ(a × n)]. ∀[B1,B2:ℝ(n × b)].  ((A1*B1) ≡ (A2*B2)) supposing (A1 ≡ A2 and B1 ≡ B2)
Proof
Definitions occuring in Statement : 
real-matrix-times: (A*B)
, 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
real-matrix-times: (A*B)
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
req_witness, 
real-matrix-times_wf, 
subtype_rel_self, 
real_wf, 
reqmatrix_wf, 
rmatrix_wf, 
istype-nat, 
rsum_wf, 
subtract_wf, 
rmul_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
istype-less_than, 
req_weakening, 
req_functionality, 
rsum_functionality2, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
functionEquality, 
imageElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
productIsType, 
addEquality
Latex:
\mforall{}[n,a,b:\mBbbN{}].  \mforall{}[A1,A2:\mBbbR{}(a  \mtimes{}  n)].  \mforall{}[B1,B2:\mBbbR{}(n  \mtimes{}  b)].
    ((A1*B1)  \mequiv{}  (A2*B2))  supposing  (A1  \mequiv{}  A2  and  B1  \mequiv{}  B2)
Date html generated:
2019_10_30-AM-08_16_14
Last ObjectModification:
2019_09_19-PM-00_54_11
Theory : reals
Home
Index