Nuprl Lemma : rinv_preserves_rneq

a,b:ℝ.  (a ≠ r0  b ≠ r0  a ≠  (r1/a) ≠ (r1/b))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) guard: {T} rdiv: (x/y) cand: c∧ B
Lemmas referenced :  rneq_wf int-to-real_wf real_wf rmul_reverses_rless rless-int rless_wf rmul_wf rless_functionality rminus_wf real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rinv_preserves_rless rless-implies-rless rsub_wf rdiv_wf rmul_reverses_rless_iff rinv_wf2 req_transitivity rminus_functionality rinv-as-rdiv rneq-symmetry rminus-neq-zero rminus-rdiv2 rmul-rinv rmul_preserves_rless rless_transitivity2 rleq_weakening_rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination minusEquality independent_functionElimination productElimination sqequalRule independent_pairFormation imageMemberEquality baseClosed independent_isectElimination computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality because_Cache inrFormation inlFormation

Latex:
\mforall{}a,b:\mBbbR{}.    (a  \mneq{}  r0  {}\mRightarrow{}  b  \mneq{}  r0  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  (r1/a)  \mneq{}  (r1/b))



Date html generated: 2017_10_03-AM-08_36_54
Last ObjectModification: 2017_07_28-AM-07_29_44

Theory : reals


Home Index