Nuprl Lemma : rless-witness_wf

[x,y:ℝ]. ∀[p:x < y].  (rless-witness(x;y;p) ∈ ℕ+)


Proof




Definitions occuring in Statement :  rless-witness: rless-witness(x;y;p) rless: x < y real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) sq_exists: x:A [B[x]] rless: x < y rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + prop: implies:  Q so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] rless-witness: rless-witness(x;y;p)
Lemmas referenced :  equal_wf pi1_wf_top subtype_rel_function int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf rsub_wf rleq_wf nat_plus_wf exists_wf rless_wf all_wf real_wf subtype_rel_self rless-implies-rleq
Rules used in proof :  axiomEquality equalitySymmetry equalityTransitivity independent_pairEquality lambdaFormation independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation unionElimination independent_functionElimination productElimination dependent_functionElimination inrFormation independent_isectElimination rename setElimination natural_numberEquality because_Cache hypothesisEquality lambdaEquality functionEquality isectElimination sqequalHypSubstitution hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[p:x  <  y].    (rless-witness(x;y;p)  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2018_05_22-PM-02_01_58
Last ObjectModification: 2018_05_21-AM-00_14_53

Theory : reals


Home Index