Nuprl Lemma : rnexp2-positive
∀x:ℝ. (x ≠ r0 ⇒ (r0 < x^2))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rless: x < y, 
rnexp: x^k1, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rneq: x ≠ y, 
or: P ∨ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
uimplies: b supposing a, 
nat: ℕ, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
false: False, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
req_int_terms: t1 ≡ t2, 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rnexp-positive, 
rminus_wf, 
rless-implies-rless, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
rsub_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
rless_transitivity1, 
rnexp_wf, 
rleq_weakening, 
req_functionality, 
rmul_wf, 
rnexp2, 
itermMultiply_wf, 
real_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
productElimination, 
int_eqEquality
Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (r0  <  x\^{}2))
 Date html generated: 
2019_10_29-AM-09_39_41
 Last ObjectModification: 
2019_03_20-PM-00_17_13
Theory : reals
Home
Index