Nuprl Lemma : rprod-split-last

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  rprod(n;m;k.x[k]) (rprod(n;m 1;k.x[k]) x[m]) supposing n ≤ m


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) req: y rmul: b real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rprod-split subtract_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermSubtract_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf subtract-add-cancel intformand_wf int_formula_prop_and_lemma req_witness rprod_wf int_seg_wf rmul_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than real_wf req_weakening rprod-single req_functionality rmul_functionality
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality independent_isectElimination dependent_functionElimination because_Cache unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule universeIsType independent_pairFormation applyEquality addEquality closedConclusion setElimination rename dependent_set_memberEquality_alt productElimination productIsType functionIsType inhabitedIsType

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    rprod(n;m;k.x[k])  =  (rprod(n;m  -  1;k.x[k])  *  x[m])  supposing  n  \mleq{}  m



Date html generated: 2019_10_29-AM-10_18_42
Last ObjectModification: 2019_01_19-AM-10_54_53

Theory : reals


Home Index