Nuprl Lemma : sq_stable__is-partition-choice

[p:ℝ List]. ∀[x:ℕ||p|| 1 ⟶ ℝ].  SqStable(is-partition-choice(p;x))


Proof




Definitions occuring in Statement :  is-partition-choice: is-partition-choice(p;x) real: length: ||as|| list: List int_seg: {i..j-} sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] is-partition-choice: is-partition-choice(p;x) member: t ∈ T so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s] i-member: r ∈ I rccint: [l, u] sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B
Lemmas referenced :  list_wf squash_wf nat_plus_wf rsub_wf less_than'_wf sq_stable__rleq rleq_wf sq_stable__and int_term_value_add_lemma itermAdd_wf false_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermSubtract_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf rccint_wf i-member_wf real_wf length_wf subtract_wf int_seg_wf sq_stable__all
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality sqequalRule lambdaEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed addEquality applyEquality independent_functionElimination lambdaFormation introduction independent_pairEquality minusEquality axiomEquality functionEquality

Latex:
\mforall{}[p:\mBbbR{}  List].  \mforall{}[x:\mBbbN{}||p||  -  1  {}\mrightarrow{}  \mBbbR{}].    SqStable(is-partition-choice(p;x))



Date html generated: 2016_05_18-AM-09_03_24
Last ObjectModification: 2016_01_17-AM-02_32_59

Theory : reals


Home Index