Nuprl Lemma : rcos-shift-2pi
∀[x:ℝ]. (rcos(x + 2 * π) = rcos(x))
Proof
Definitions occuring in Statement : 
pi: π, 
rcos: rcos(x), 
int-rmul: k1 * a, 
req: x = y, 
radd: a + b, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rcos_wf, 
radd_wf, 
int-rmul_wf, 
pi_wf, 
real_wf, 
rmul_wf, 
int-to-real_wf, 
req_wf, 
req_weakening, 
rminus_wf, 
rminus-rminus, 
req_functionality, 
radd_functionality, 
int-rmul-req, 
uiff_transitivity, 
req_inversion, 
radd-assoc, 
radd_comm, 
req_transitivity, 
radd-ac, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rcos_functionality, 
rcos-shift-pi, 
rminus_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
addEquality, 
independent_isectElimination, 
productElimination, 
sqequalRule
Latex:
\mforall{}[x:\mBbbR{}].  (rcos(x  +  2  *  \mpi{})  =  rcos(x))
Date html generated:
2016_10_26-PM-00_23_58
Last ObjectModification:
2016_09_12-PM-05_43_23
Theory : reals_2
Home
Index