Nuprl Lemma : rexp-increasing
∀a,b:ℝ.  ((a < b) ⇒ (e^a < e^b))
Proof
Definitions occuring in Statement : 
rexp: e^x, 
rless: x < y, 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rexp-radd, 
rsub_wf, 
rless_wf, 
real_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
rexp_wf, 
rmul_wf, 
rexp-of-positive, 
rless-implies-rless, 
int-to-real_wf, 
equal_wf, 
itermConstant_wf, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
req_functionality, 
rexp_functionality, 
req_weakening, 
rless_functionality, 
rmul_preserves_rless, 
rexp-positive, 
rmul-identity1, 
rmul_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}a,b:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  (e\^{}a  <  e\^{}b))
Date html generated:
2017_10_04-PM-10_17_49
Last ObjectModification:
2017_06_05-PM-11_58_08
Theory : reals_2
Home
Index