Nuprl Lemma : rexp-rminus
∀[x:ℝ]. (e^-(x) = (r1/e^x))
Proof
Definitions occuring in Statement :
rexp: e^x
,
rdiv: (x/y)
,
req: x = y
,
rminus: -(x)
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
all: ∀x:A. B[x]
,
prop: ℙ
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
implies: P
⇒ Q
Lemmas referenced :
rmul_preserves_req,
rexp_wf,
rminus_wf,
rdiv_wf,
rexp-positive,
req_witness,
int-to-real_wf,
rless_wf,
real_wf,
rmul_wf,
req_functionality,
req_weakening,
rmul-rdiv-cancel2,
radd_wf,
req_wf,
req_inversion,
rexp-radd,
uiff_transitivity,
rexp_functionality,
req_transitivity,
radd_functionality,
rminus-as-rmul,
rmul-identity1,
rmul-distrib2,
rmul_functionality,
radd-int,
rmul-zero-both,
rexp0
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
because_Cache,
independent_isectElimination,
sqequalRule,
inrFormation,
dependent_functionElimination,
productElimination,
natural_numberEquality,
independent_functionElimination,
minusEquality,
addEquality
Latex:
\mforall{}[x:\mBbbR{}]. (e\^{}-(x) = (r1/e\^{}x))
Date html generated:
2016_10_26-PM-00_12_23
Last ObjectModification:
2016_09_12-PM-05_39_32
Theory : reals_2
Home
Index