Nuprl Lemma : rexp0

e^r0 r1


Proof




Definitions occuring in Statement :  rexp: e^x req: y int-to-real: r(n) natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q nat: subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: nequal: a ≠ b ∈  not: ¬A false: False guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} true: True rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P)
Lemmas referenced :  rexp-is-limit int-to-real_wf series-sum-constant ifthenelse_wf eq_int_wf real_wf nat_wf int-rdiv_wf fact_wf subtype_rel_sets less_than_wf nequal_wf nat_plus_properties nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base rnexp_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nequal-le-implies zero-add req_weakening series-sum_functionality rnexp_zero_lemma fact0_redex_lemma true_wf rdiv_wf rless-int rless_wf rmul_preserves_req req_wf rmul_wf req_functionality int-rdiv-req uiff_transitivity rmul-int rmul-ident-div int_upper_properties decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel nat_plus_wf rneq-int fact-non-zero int-rdiv_functionality rnexp0 rdiv-zero series-sum-unique rexp_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin isectElimination natural_numberEquality hypothesis independent_functionElimination lambdaEquality setElimination rename hypothesisEquality applyEquality sqequalRule intEquality because_Cache independent_isectElimination setEquality lambdaFormation equalityTransitivity equalitySymmetry applyLambdaEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed unionElimination equalityElimination productElimination promote_hyp instantiate hypothesis_subsumption dependent_set_memberEquality cumulativity addLevel inrFormation imageMemberEquality multiplyEquality

Latex:
e\^{}r0  =  r1



Date html generated: 2017_10_03-AM-09_30_12
Last ObjectModification: 2017_07_28-AM-07_49_03

Theory : reals


Home Index