Nuprl Lemma : sp-join-meet-distrib
∀[x,y,z:Sierpinski].  (x ∧ y ∨ z = x ∨ z ∧ y ∨ z ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
sp-join: f ∨ g, 
sp-meet: f ∧ g, 
Sierpinski: Sierpinski, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
not: ¬A, 
false: False, 
cand: A c∧ B, 
squash: ↓T, 
guard: {T}, 
true: True
Lemmas referenced : 
Sierpinski-equal, 
sp-join_wf, 
sp-meet_wf, 
sp-meet-is-top, 
equal-wf-T-base, 
Sierpinski_wf, 
iff_wf, 
equal-wf-base, 
Sierpinski-equal2, 
Sierpinski-bottom_wf, 
subtype-Sierpinski, 
sp-join-is-bottom, 
Sierpinski-unequal, 
not-Sierpinski-top, 
not-Sierpinski-bottom, 
equal_wf, 
iff_weakening_equal, 
and_wf, 
squash_wf, 
true_wf, 
sp-join-com, 
sp-join-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
addLevel, 
independent_pairFormation, 
impliesFunctionality, 
independent_functionElimination, 
productEquality, 
baseClosed, 
because_Cache, 
andLevelFunctionality, 
sqequalRule, 
impliesLevelFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
lambdaFormation, 
voidElimination, 
promote_hyp, 
lambdaEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
universeEquality
Latex:
\mforall{}[x,y,z:Sierpinski].    (x  \mwedge{}  y  \mvee{}  z  =  x  \mvee{}  z  \mwedge{}  y  \mvee{}  z)
Date html generated:
2019_10_31-AM-07_18_34
Last ObjectModification:
2017_07_28-AM-09_12_18
Theory : synthetic!topology
Home
Index