Nuprl Lemma : sp-meet-join-distrib

[x,y,z:Sierpinski].  (x ∨ y ∧ x ∧ z ∨ y ∧ z ∈ Sierpinski)


Proof




Definitions occuring in Statement :  sp-join: f ∨ g sp-meet: f ∧ g Sierpinski: Sierpinski uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q implies:  Q prop: subtype_rel: A ⊆B not: ¬A false: False cand: c∧ B squash: T guard: {T} true: True
Lemmas referenced :  Sierpinski-equal2 sp-meet_wf sp-join_wf sp-join-is-bottom equal-wf-T-base Sierpinski_wf iff_wf equal-wf-base Sierpinski-equal Sierpinski-top_wf subtype-Sierpinski sp-meet-is-top Sierpinski-unequal not-Sierpinski-bottom not-Sierpinski-top equal_wf iff_weakening_equal and_wf squash_wf true_wf sp-meet-com sp-meet-bottom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination addLevel independent_pairFormation impliesFunctionality independent_functionElimination productEquality baseClosed because_Cache andLevelFunctionality sqequalRule impliesLevelFunctionality equalityTransitivity equalitySymmetry applyEquality isect_memberEquality axiomEquality lambdaFormation voidElimination promote_hyp lambdaEquality imageElimination equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality dependent_set_memberEquality applyLambdaEquality setElimination rename universeEquality

Latex:
\mforall{}[x,y,z:Sierpinski].    (x  \mvee{}  y  \mwedge{}  z  =  x  \mwedge{}  z  \mvee{}  y  \mwedge{}  z)



Date html generated: 2019_10_31-AM-07_18_37
Last ObjectModification: 2017_07_28-AM-09_12_19

Theory : synthetic!topology


Home Index