Nuprl Lemma : nat_ind_a
∀[P:ℕ ⟶ ℙ{k}]. (P[0] 
⇒ (∀i:ℕ+. (P[i - 1] 
⇒ P[i])) 
⇒ {∀i:ℕ. P[i]})
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
Lemmas referenced : 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
add-subtract-cancel, 
primrec-wf, 
nat_wf, 
all_wf, 
nat_plus_wf, 
subtract_wf, 
decidable__le, 
not-le-2, 
less-iff-le, 
minus-minus, 
add-swap, 
le_wf, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
rename, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
hypothesisEquality, 
natural_numberEquality, 
productElimination, 
lemma_by_obid, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
applyEquality, 
because_Cache, 
minusEquality, 
introduction, 
instantiate, 
lambdaEquality, 
cumulativity, 
universeEquality, 
functionEquality, 
isect_memberEquality, 
voidEquality, 
intEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}\{k\}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (P[i  -  1]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  \{\mforall{}i:\mBbbN{}.  P[i]\})
Date html generated:
2016_05_13-PM-03_47_07
Last ObjectModification:
2015_12_26-AM-09_58_08
Theory : call!by!value_2
Home
Index