Nuprl Lemma : implies-vdf-eq
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
vdf-eq(A;f;L) supposing ∀i:ℕ||L|| + 1. ((∀j:ℕi. vdf-eq(A;f;firstn(j;L)))
⇒ vdf-eq(A;f;firstn(i;L)))
Proof
Definitions occuring in Statement :
very-dep-fun: very-dep-fun(A;B;a,b.C[a; b])
,
vdf-eq: vdf-eq(A;f;L)
,
firstn: firstn(n;as)
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
add: n + m
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
,
sq_type: SQType(T)
,
nat: ℕ
,
less_than: a < b
,
squash: ↓T
,
ge: i ≥ j
Lemmas referenced :
sq_stable__vdf-eq,
int_seg_properties,
full-omega-unsat,
intformand_wf,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
int_seg_wf,
decidable__equal_int,
subtract_wf,
subtype_base_sq,
set_subtype_base,
lelt_wf,
int_subtype_base,
intformnot_wf,
intformeq_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
decidable__le,
decidable__lt,
istype-le,
istype-less_than,
subtype_rel_self,
length_wf,
itermAdd_wf,
int_term_value_add_lemma,
nat_properties,
le_wf,
vdf-eq_wf,
firstn_wf,
primrec-wf2,
istype-nat,
length_wf_nat,
firstn_all,
subtype_rel_list,
top_wf,
list_wf,
very-dep-fun_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality_alt,
applyEquality,
universeIsType,
hypothesis,
independent_functionElimination,
lambdaFormation_alt,
setElimination,
rename,
productElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
dependent_pairFormation_alt,
int_eqEquality,
dependent_functionElimination,
Error :memTop,
independent_pairFormation,
voidElimination,
unionElimination,
instantiate,
cumulativity,
intEquality,
inhabitedIsType,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_set_memberEquality_alt,
because_Cache,
productIsType,
promote_hyp,
hypothesis_subsumption,
addEquality,
productEquality,
imageElimination,
functionIsType,
functionEquality,
setIsType,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[C:A {}\mrightarrow{} B {}\mrightarrow{} Type]. \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])]. \mforall{}[L:(a:A \mtimes{} b:B \mtimes{} C[a;b]) List].
vdf-eq(A;f;L)
supposing \mforall{}i:\mBbbN{}||L|| + 1. ((\mforall{}j:\mBbbN{}i. vdf-eq(A;f;firstn(j;L))) {}\mRightarrow{} vdf-eq(A;f;firstn(i;L)))
Date html generated:
2020_05_19-PM-09_40_58
Last ObjectModification:
2020_03_06-PM-01_37_51
Theory : co-recursion-2
Home
Index