Nuprl Lemma : implies-vdf-eq

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
  vdf-eq(A;f;L) supposing ∀i:ℕ||L|| 1. ((∀j:ℕi. vdf-eq(A;f;firstn(j;L)))  vdf-eq(A;f;firstn(i;L)))


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) firstn: firstn(n;as) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) implies:  Q all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_type: SQType(T) nat: less_than: a < b squash: T ge: i ≥ 
Lemmas referenced :  sq_stable__vdf-eq int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le istype-less_than subtype_rel_self length_wf itermAdd_wf int_term_value_add_lemma nat_properties le_wf vdf-eq_wf firstn_wf primrec-wf2 istype-nat length_wf_nat firstn_all subtype_rel_list top_wf list_wf very-dep-fun_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType hypothesis independent_functionElimination lambdaFormation_alt setElimination rename productElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation voidElimination unionElimination instantiate cumulativity intEquality inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt because_Cache productIsType promote_hyp hypothesis_subsumption addEquality productEquality imageElimination functionIsType functionEquality setIsType imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].
    vdf-eq(A;f;L) 
    supposing  \mforall{}i:\mBbbN{}||L||  +  1.  ((\mforall{}j:\mBbbN{}i.  vdf-eq(A;f;firstn(j;L)))  {}\mRightarrow{}  vdf-eq(A;f;firstn(i;L)))



Date html generated: 2020_05_19-PM-09_40_58
Last ObjectModification: 2020_03_06-PM-01_37_51

Theory : co-recursion-2


Home Index