Nuprl Lemma : implies-vdf-eq
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
  vdf-eq(A;f;L) supposing ∀i:ℕ||L|| + 1. ((∀j:ℕi. vdf-eq(A;f;firstn(j;L))) 
⇒ vdf-eq(A;f;firstn(i;L)))
Proof
Definitions occuring in Statement : 
very-dep-fun: very-dep-fun(A;B;a,b.C[a; b])
, 
vdf-eq: vdf-eq(A;f;L)
, 
firstn: firstn(n;as)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
Lemmas referenced : 
sq_stable__vdf-eq, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
length_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_properties, 
le_wf, 
vdf-eq_wf, 
firstn_wf, 
primrec-wf2, 
istype-nat, 
length_wf_nat, 
firstn_all, 
subtype_rel_list, 
top_wf, 
list_wf, 
very-dep-fun_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
hypothesis, 
independent_functionElimination, 
lambdaFormation_alt, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
because_Cache, 
productIsType, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
productEquality, 
imageElimination, 
functionIsType, 
functionEquality, 
setIsType, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].
    vdf-eq(A;f;L) 
    supposing  \mforall{}i:\mBbbN{}||L||  +  1.  ((\mforall{}j:\mBbbN{}i.  vdf-eq(A;f;firstn(j;L)))  {}\mRightarrow{}  vdf-eq(A;f;firstn(i;L)))
Date html generated:
2020_05_19-PM-09_40_58
Last ObjectModification:
2020_03_06-PM-01_37_51
Theory : co-recursion-2
Home
Index