Nuprl Lemma : Wmul-Wadd

[A:Type]. ∀[B:A ⟶ Type]. ∀[zero,succ:A ⟶ 𝔹].
  ∀[w3,w2,w1:W(A;a.B[a])].  ((w1 (w2 w3)) ((w1 w2) (w1 w3)) ∈ W(A;a.B[a])) 
  supposing ∀a:A. (((↑(succ a))  (Unit ⊆B[a])) ∧ ((↑(zero a))  B[a])))


Proof




Definitions occuring in Statement :  Wmul: (w1 w2) Wadd: (w1 w2) W: W(A;a.B[a]) assert: b bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B Wadd: (w1 w2) Wsup: Wsup(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False Wmul: (w1 w2) not: ¬A squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  W-induction all_wf W_wf equal_wf Wmul_wf Wadd_wf assert_wf decidable__assert subtype_rel_wf unit_wf2 not_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot it_wf iff_weakening_equal Wadd-assoc Wsup_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity because_Cache hypothesis independent_isectElimination lambdaFormation dependent_functionElimination productElimination independent_functionElimination unionElimination functionEquality isect_memberEquality axiomEquality productEquality universeEquality equalityTransitivity equalitySymmetry equalityElimination dependent_pairFormation promote_hyp instantiate voidElimination imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero,succ:A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[w3,w2,w1:W(A;a.B[a])].    ((w1  *  (w2  +  w3))  =  ((w1  *  w2)  +  (w1  *  w3))) 
    supposing  \mforall{}a:A.  (((\muparrow{}(succ  a))  {}\mRightarrow{}  (Unit  \msubseteq{}r  B[a]))  \mwedge{}  ((\muparrow{}(zero  a))  {}\mRightarrow{}  (\mneg{}B[a])))



Date html generated: 2017_04_14-AM-07_44_56
Last ObjectModification: 2017_02_27-PM-03_15_56

Theory : co-recursion


Home Index