Nuprl Lemma : Wmul-Wadd
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[zero,succ:A ⟶ 𝔹].
  ∀[w3,w2,w1:W(A;a.B[a])].  ((w1 * (w2 + w3)) = ((w1 * w2) + (w1 * w3)) ∈ W(A;a.B[a])) 
  supposing ∀a:A. (((↑(succ a)) 
⇒ (Unit ⊆r B[a])) ∧ ((↑(zero a)) 
⇒ (¬B[a])))
Proof
Definitions occuring in Statement : 
Wmul: (w1 * w2)
, 
Wadd: (w1 + w2)
, 
W: W(A;a.B[a])
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
Wadd: (w1 + w2)
, 
Wsup: Wsup(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
Wmul: (w1 * w2)
, 
not: ¬A
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
W-induction, 
all_wf, 
W_wf, 
equal_wf, 
Wmul_wf, 
Wadd_wf, 
assert_wf, 
decidable__assert, 
subtype_rel_wf, 
unit_wf2, 
not_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
it_wf, 
iff_weakening_equal, 
Wadd-assoc, 
Wsup_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
functionEquality, 
isect_memberEquality, 
axiomEquality, 
productEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero,succ:A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[w3,w2,w1:W(A;a.B[a])].    ((w1  *  (w2  +  w3))  =  ((w1  *  w2)  +  (w1  *  w3))) 
    supposing  \mforall{}a:A.  (((\muparrow{}(succ  a))  {}\mRightarrow{}  (Unit  \msubseteq{}r  B[a]))  \mwedge{}  ((\muparrow{}(zero  a))  {}\mRightarrow{}  (\mneg{}B[a])))
Date html generated:
2017_04_14-AM-07_44_56
Last ObjectModification:
2017_02_27-PM-03_15_56
Theory : co-recursion
Home
Index