Nuprl Lemma : gen-continuity-contradicts-markov
(∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ.  ((P f) 
⇒ ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g)))))
⇒ (¬(∀A:ℕ ⟶ ℙ. ((∀n:ℕ. ((A n) ∨ (¬(A n)))) 
⇒ (¬¬(∃n:ℕ. (A n))) 
⇒ (∃n:ℕ. (A n)))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
is-absolutely-free: is-absolutely-free{i:l}(f)
, 
increasing-sequence: increasing-sequence(a)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
cand: A c∧ B
Lemmas referenced : 
istype-nat, 
subtype_rel_self, 
istype-void, 
quotient_wf, 
nat_wf, 
equal_wf, 
int_seg_wf, 
true_wf, 
equiv_rel_true, 
init0_wf, 
increasing-sequence_wf, 
ge_wf, 
nat_properties, 
decidable__or, 
le_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
not_wf, 
decidable__not, 
intformor_wf, 
int_formula_prop_or_lemma, 
Kripke2a, 
sq_stable_from_decidable, 
equal-wf-base, 
itermAdd_wf, 
int_term_value_add_lemma, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_nat, 
add_nat_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
Kripke2b, 
init0-zero-seq, 
increasing-zero-seq, 
zero-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
functionIsType, 
introduction, 
extract_by_obid, 
universeIsType, 
universeEquality, 
unionIsType, 
applyEquality, 
hypothesisEquality, 
instantiate, 
isectElimination, 
productIsType, 
inhabitedIsType, 
productEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality_alt, 
equalityIstype, 
independent_isectElimination, 
setIsType, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
unionEquality, 
productElimination, 
addEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
(\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((P  f)  {}\mRightarrow{}  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g)))))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  ((A  n)  \mvee{}  (\mneg{}(A  n))))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (A  n)))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (A  n)))))
Date html generated:
2020_05_19-PM-10_06_04
Last ObjectModification:
2020_01_04-PM-08_04_11
Theory : continuity
Home
Index