Nuprl Lemma : gen-continuity-contradicts-markov

(∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ.  ((P f)  ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ((f g ∈ (ℕk ⟶ ℕ))  (P g)))))
 (∀A:ℕ ⟶ ℙ((∀n:ℕ((A n) ∨ (A n))))  (¬¬(∃n:ℕ(A n)))  (∃n:ℕ(A n)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  implies:  Q not: ¬A false: False all: x:A. B[x] member: t ∈ T prop: or: P ∨ Q subtype_rel: A ⊆B uall: [x:A]. B[x] exists: x:A. B[x] nat: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) is-absolutely-free: is-absolutely-free{i:l}(f) increasing-sequence: increasing-sequence(a) so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) guard: {T} sq_stable: SqStable(P) squash: T cand: c∧ B
Lemmas referenced :  istype-nat subtype_rel_self istype-void quotient_wf nat_wf equal_wf int_seg_wf true_wf equiv_rel_true init0_wf increasing-sequence_wf ge_wf nat_properties decidable__or le_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le not_wf decidable__not intformor_wf int_formula_prop_or_lemma Kripke2a sq_stable_from_decidable equal-wf-base itermAdd_wf int_term_value_add_lemma set_subtype_base int_subtype_base decidable__equal_nat add_nat_wf intformeq_wf int_formula_prop_eq_lemma false_wf Kripke2b init0-zero-seq increasing-zero-seq zero-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination sqequalRule functionIsType introduction extract_by_obid universeIsType universeEquality unionIsType applyEquality hypothesisEquality instantiate isectElimination productIsType inhabitedIsType productEquality functionEquality natural_numberEquality setElimination rename lambdaEquality_alt equalityIstype independent_isectElimination setIsType dependent_functionElimination dependent_set_memberEquality_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation unionEquality productElimination addEquality intEquality equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp imageMemberEquality baseClosed imageElimination

Latex:
(\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((P  f)  {}\mRightarrow{}  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g)))))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  ((A  n)  \mvee{}  (\mneg{}(A  n))))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (A  n)))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (A  n)))))



Date html generated: 2020_05_19-PM-10_06_04
Last ObjectModification: 2020_01_04-PM-08_04_11

Theory : continuity


Home Index