Nuprl Lemma : unsquashed-monotone-bar-induction8-false3

¬(∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
    ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s]))
     (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. B[m;f]))
     (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s]))
     Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] int_upper: {i...} uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False exists: x:A. B[x] so_lambda: λ2y.t[x; y] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  int_formula_prop_less_lemma intformless_wf int_seg_properties seq-add_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties equiv_rel_true true_wf subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf subtype_rel_dep_function int_upper_subtype_nat int_upper_wf exists_wf quotient_wf nat_wf all_wf unsquashed-monotone-bar-induction8-false
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution independent_functionElimination thin isectElimination functionEquality hypothesis because_Cache sqequalRule lambdaEquality setElimination rename hypothesisEquality applyEquality natural_numberEquality independent_isectElimination independent_pairFormation dependent_set_memberEquality addEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll cumulativity universeEquality instantiate productElimination

Latex:
\mneg{}(\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
        {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  B[m;f]))
        {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]))
        {}\mRightarrow{}  Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2016_05_14-PM-09_45_35
Last ObjectModification: 2016_02_02-PM-04_40_10

Theory : continuity


Home Index