Nuprl Lemma : weak-continuity-nat-int-bool

F:(ℕ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ ⟶ ℤ.  ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℤ((f g ∈ (ℕn ⟶ ℤ))  g))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  weak-continuity-nat-int nat_wf bool_wf eqtt_to_assert false_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot exists_wf all_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat subtype_rel_self implies-quotient-true btrue_wf equal-wf-base nat_properties full-omega-unsat intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf bfalse_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin lambdaEquality applyEquality functionExtensionality hypothesisEquality functionEquality intEquality because_Cache unionElimination equalityElimination sqequalRule isectElimination productElimination independent_isectElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination setElimination rename baseClosed applyLambdaEquality approximateComputation isect_memberEquality voidEquality

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))



Date html generated: 2017_09_29-PM-06_06_35
Last ObjectModification: 2017_07_05-PM-06_21_55

Theory : continuity


Home Index