Nuprl Lemma : weak-continuity-nat-int-bool
∀F:(ℕ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ ⟶ ℤ.  ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℤ. ((f = g ∈ (ℕn ⟶ ℤ)) ⇒ F f = F g))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
weak-continuity-nat-int, 
nat_wf, 
bool_wf, 
eqtt_to_assert, 
false_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
exists_wf, 
all_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
implies-quotient-true, 
btrue_wf, 
equal-wf-base, 
nat_properties, 
full-omega-unsat, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
bfalse_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
functionEquality, 
intEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
sqequalRule, 
isectElimination, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
setElimination, 
rename, 
baseClosed, 
applyLambdaEquality, 
approximateComputation, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))
Date html generated:
2017_09_29-PM-06_06_35
Last ObjectModification:
2017_07_05-PM-06_21_55
Theory : continuity
Home
Index