Nuprl Lemma : values-for-distinct-nil
∀[A,V:Type]. ∀[eq:EqDecider(A)]. ∀[L:(A × V) List].
  uiff(values-for-distinct(eq;L) = [] ∈ (V List);L = [] ∈ ((A × V) List))
Proof
Definitions occuring in Statement : 
values-for-distinct: values-for-distinct(eq;L), 
nil: [], 
list: T List, 
deq: EqDecider(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
pi1: fst(t), 
deq: EqDecider(T), 
ge: i ≥ j , 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
values-for-distinct: values-for-distinct(eq;L)
Lemmas referenced : 
values-for-distinct-property, 
equal-wf-T-base, 
list_wf, 
values-for-distinct_wf, 
length_wf_nat, 
equal_wf, 
nat_wf, 
length_wf, 
remove-repeats_wf, 
map_wf, 
pi1_wf, 
length_of_nil_lemma, 
list_induction, 
equal-wf-base-T, 
map_nil_lemma, 
remove_repeats_nil_lemma, 
nil_wf, 
equal-wf-base, 
map_cons_lemma, 
remove_repeats_cons_lemma, 
length_of_cons_lemma, 
non_neg_length, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
cumulativity, 
baseClosed, 
productEquality, 
because_Cache, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
intEquality, 
setElimination, 
rename, 
lambdaEquality, 
functionEquality, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
lambdaFormation, 
applyEquality, 
setEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
addEquality
Latex:
\mforall{}[A,V:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:(A  \mtimes{}  V)  List].    uiff(values-for-distinct(eq;L)  =  [];L  =  [])
Date html generated:
2016_10_21-AM-10_39_41
Last ObjectModification:
2016_07_12-AM-05_49_54
Theory : decidable!equality
Home
Index