Nuprl Lemma : values-for-distinct-nil

[A,V:Type]. ∀[eq:EqDecider(A)]. ∀[L:(A × V) List].
  uiff(values-for-distinct(eq;L) [] ∈ (V List);L [] ∈ ((A × V) List))


Proof




Definitions occuring in Statement :  values-for-distinct: values-for-distinct(eq;L) nil: [] list: List deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top pi1: fst(t) deq: EqDecider(T) ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A values-for-distinct: values-for-distinct(eq;L)
Lemmas referenced :  values-for-distinct-property equal-wf-T-base list_wf values-for-distinct_wf length_wf_nat equal_wf nat_wf length_wf remove-repeats_wf map_wf pi1_wf length_of_nil_lemma list_induction equal-wf-base-T map_nil_lemma remove_repeats_nil_lemma nil_wf equal-wf-base map_cons_lemma remove_repeats_cons_lemma length_of_cons_lemma non_neg_length filter_wf5 l_member_wf bnot_wf satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination independent_pairFormation cumulativity baseClosed productEquality because_Cache sqequalRule independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality hyp_replacement Error :applyLambdaEquality,  intEquality setElimination rename lambdaEquality functionEquality independent_functionElimination voidElimination voidEquality lambdaFormation applyEquality setEquality natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality computeAll addEquality

Latex:
\mforall{}[A,V:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:(A  \mtimes{}  V)  List].    uiff(values-for-distinct(eq;L)  =  [];L  =  [])



Date html generated: 2016_10_21-AM-10_39_41
Last ObjectModification: 2016_07_12-AM-05_49_54

Theory : decidable!equality


Home Index