Nuprl Lemma : fset-ac-lub-covers

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:{ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ]. ∀[a:fset(T)].
  (((↑ac-covers(eq;x;a)) ∨ (↑ac-covers(eq;y;a)))  (↑ac-covers(eq;fset-ac-lub(eq;x;y);a)))


Proof




Definitions occuring in Statement :  fset-ac-lub: fset-ac-lub(eq;ac1;ac2) ac-covers: ac-covers(eq;ac;x) fset-antichain: fset-antichain(eq;ac) fset: fset(T) deq: EqDecider(T) assert: b uall: [x:A]. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q squash: T rev_implies:  Q cand: c∧ B fset-ac-lub: fset-ac-lub(eq;ac1;ac2) guard: {T}
Lemmas referenced :  deq_wf set_wf assert_witness ac-covers_wf or_wf f-subset_transitivity member-fset-union fset-antichain_wf assert_wf fset-ac-lub_wf f-subset_wf fset-member_wf and_wf exists_wf squash_wf assert-ac-covers f-proper-subset-dec_wf fset-minimals_wf fset-ac-le-iff deq-fset_wf fset_wf fset-union_wf fset-minimals-ac-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis setElimination rename because_Cache sqequalRule lambdaEquality productElimination independent_functionElimination addLevel orFunctionality independent_isectElimination levelHypothesis promote_hyp applyEquality setEquality unionElimination imageElimination inlFormation dependent_pairFormation independent_pairFormation productEquality imageMemberEquality baseClosed inrFormation orLevelFunctionality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ].  \mforall{}[a:fset(T)].
    (((\muparrow{}ac-covers(eq;x;a))  \mvee{}  (\muparrow{}ac-covers(eq;y;a)))  {}\mRightarrow{}  (\muparrow{}ac-covers(eq;fset-ac-lub(eq;x;y);a)))



Date html generated: 2016_05_14-PM-03_48_51
Last ObjectModification: 2016_01_20-PM-09_08_23

Theory : finite!sets


Home Index