Nuprl Lemma : nat_ind

[P:ℕ ⟶ ℙ{k}]. (P[0]  (∀i:ℕ+(P[i 1]  P[i]))  {∀j:ℕP[j]})


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_wf all_wf nat_plus_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf nat_plus_subtype_nat set_wf less_than_wf primrec-wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality functionEquality dependent_set_memberEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination addEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache introduction

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}\{k\}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (P[i  -  1]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  \{\mforall{}j:\mBbbN{}.  P[j]\})



Date html generated: 2016_05_13-PM-04_02_50
Last ObjectModification: 2015_12_26-AM-10_56_26

Theory : int_1


Home Index