Nuprl Lemma : before-reverse
∀[T:Type]. ∀L:T List. ∀x,y:T.  (x before y ∈ rev(L) ⇐⇒ y before x ∈ L)
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l, 
reverse: rev(as), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ, 
top: Top, 
implies: P ⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
false: False, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
guard: {T}
Lemmas referenced : 
reverse-cons, 
reverse_nil_lemma, 
list_wf, 
reverse_wf, 
l_before_wf, 
iff_wf, 
all_wf, 
list_induction, 
nil_wf, 
nil_before, 
append_wf, 
cons_before, 
l_before_append_iff, 
equal_wf, 
l_member_wf, 
cons_wf, 
or_wf, 
singleton_before, 
member_singleton, 
member-reverse, 
cons_member
Rules used in proof : 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
rename, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
addLevel, 
productEquality, 
unionElimination, 
Error :inrFormation_alt, 
Error :productIsType, 
Error :equalityIstype, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :inlFormation_alt, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
Error :unionIsType
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x,y:T.    (x  before  y  \mmember{}  rev(L)  \mLeftarrow{}{}\mRightarrow{}  y  before  x  \mmember{}  L)
Date html generated:
2019_06_20-PM-01_47_00
Last ObjectModification:
2019_01_15-PM-02_56_20
Theory : list_1
Home
Index