Nuprl Lemma : finite-set-type

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. SqStable(P[x]))  (finite-type({x:T| P[x]} ⇐⇒ ∃L:T List. ∀x:T. (P[x] ⇐⇒ (x ∈ L))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) l_member: (x ∈ l) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a all: x:A. B[x] rev_implies:  Q prop: so_lambda: λ2x.t[x] l_member: (x ∈ l) cand: c∧ B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top squash: T sq_stable: SqStable(P) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  subtype_rel_list l_member_wf list_wf subtype_rel_self finite-type-iff-list finite-type_wf sq_stable_wf l_member-settype select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf list-set-type2 l_all_iff less_than_wf length_wf select_member le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut independent_pairFormation sqequalHypSubstitution productElimination thin Error :dependent_pairFormation_alt,  hypothesisEquality applyEquality introduction extract_by_obid isectElimination setEquality hypothesis because_Cache sqequalRule independent_isectElimination Error :lambdaEquality_alt,  setElimination rename Error :setIsType,  Error :universeIsType,  Error :inhabitedIsType,  Error :functionIsType,  Error :productIsType,  instantiate universeEquality independent_functionElimination promote_hyp dependent_functionElimination Error :dependent_set_memberEquality_alt,  natural_numberEquality unionElimination approximateComputation int_eqEquality Error :isect_memberEquality_alt,  voidElimination hyp_replacement equalitySymmetry applyLambdaEquality imageMemberEquality baseClosed imageElimination equalityTransitivity Error :equalityIsType1

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  SqStable(P[x]))  {}\mRightarrow{}  (finite-type(\{x:T|  P[x]\}  )  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  \mforall{}x:T.  (P[x]  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))))



Date html generated: 2019_06_20-PM-01_32_36
Last ObjectModification: 2018_10_15-PM-01_40_42

Theory : list_1


Home Index