Nuprl Lemma : finite-set-type
∀[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. SqStable(P[x])) ⇒ (finite-type({x:T| P[x]} ) ⇐⇒ ∃L:T List. ∀x:T. (P[x] ⇐⇒ (x ∈ L))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T), 
l_member: (x ∈ l), 
list: T List, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
rev_implies: P ⇐ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
l_member: (x ∈ l), 
cand: A c∧ B, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
squash: ↓T, 
sq_stable: SqStable(P), 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k
Lemmas referenced : 
subtype_rel_list, 
l_member_wf, 
list_wf, 
subtype_rel_self, 
finite-type-iff-list, 
finite-type_wf, 
sq_stable_wf, 
l_member-settype, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
list-set-type2, 
l_all_iff, 
less_than_wf, 
length_wf, 
select_member, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
Error :dependent_pairFormation_alt, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
setEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :setIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :productIsType, 
instantiate, 
universeEquality, 
independent_functionElimination, 
promote_hyp, 
dependent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
Error :equalityIsType1
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  SqStable(P[x]))  {}\mRightarrow{}  (finite-type(\{x:T|  P[x]\}  )  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  \mforall{}x:T.  (P[x]  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))))
Date html generated:
2019_06_20-PM-01_32_36
Last ObjectModification:
2018_10_15-PM-01_40_42
Theory : list_1
Home
Index