Nuprl Lemma : mapfilter-pos-length

[T,B:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:{x:T| (x ∈ L)} | ↑(P x)}  ⟶ B].
  0 < ||mapfilter(f;P;L)|| supposing (∃x∈L. ↑(P x))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) length: ||as|| list: List assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] or: P ∨ Q not: ¬A false: False cons: [a b] top: Top nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  mapfilter-not-nil l_exists_wf assert_wf l_member_wf set_wf bool_wf list_wf mapfilter_wf list-subtype list-cases length_of_nil_lemma not_wf equal-wf-base product_subtype_list length_of_cons_lemma add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf equal-wf-T-base
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination independent_functionElimination cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality setEquality setElimination rename dependent_set_memberEquality functionEquality because_Cache lambdaFormation universeEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination voidElimination baseClosed promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality natural_numberEquality independent_pairFormation imageMemberEquality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[T,B:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:\{x:T|  (x  \mmember{}  L)\}  |  \muparrow{}(P  x)\}    {}\mrightarrow{}  B].
    0  <  ||mapfilter(f;P;L)||  supposing  (\mexists{}x\mmember{}L.  \muparrow{}(P  x))



Date html generated: 2017_04_17-AM-07_30_06
Last ObjectModification: 2017_02_27-PM-04_07_21

Theory : list_1


Home Index