Nuprl Lemma : mapfilter-pos-length
∀[T,B:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:{x:T| (x ∈ L)} | ↑(P x)}  ⟶ B].
  0 < ||mapfilter(f;P;L)|| supposing (∃x∈L. ↑(P x))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
guard: {T}
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
mapfilter-not-nil, 
l_exists_wf, 
assert_wf, 
l_member_wf, 
set_wf, 
bool_wf, 
list_wf, 
mapfilter_wf, 
list-subtype, 
list-cases, 
length_of_nil_lemma, 
not_wf, 
equal-wf-base, 
product_subtype_list, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
equal_wf, 
equal-wf-T-base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
independent_functionElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
functionEquality, 
because_Cache, 
lambdaFormation, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[T,B:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:\{x:T|  (x  \mmember{}  L)\}  |  \muparrow{}(P  x)\}    {}\mrightarrow{}  B].
    0  <  ||mapfilter(f;P;L)||  supposing  (\mexists{}x\mmember{}L.  \muparrow{}(P  x))
Date html generated:
2017_04_17-AM-07_30_06
Last ObjectModification:
2017_02_27-PM-04_07_21
Theory : list_1
Home
Index