Nuprl Lemma : member-firstn
∀[T:Type]. ∀L:T List. ∀n:ℕ||L|| + 1. ∀x:T.  ((x ∈ firstn(n;L)) ⇐⇒ ∃i:ℕn. (x = L[i] ∈ T))
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as), 
l_member: (x ∈ l), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
rev_implies: P ⇐ Q, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
uiff: uiff(P;Q), 
so_apply: x[s]
Lemmas referenced : 
member_firstn, 
int_seg_subtype_nat, 
length_wf, 
false_wf, 
lelt_wf, 
equal_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
l_member_wf, 
firstn_wf, 
less_than_wf, 
exists_wf, 
int_seg_wf, 
add-is-int-iff, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
addEquality, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
unionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
productEquality, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}n:\mBbbN{}||L||  +  1.  \mforall{}x:T.    ((x  \mmember{}  firstn(n;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (x  =  L[i]))
Date html generated:
2017_04_17-AM-07_51_53
Last ObjectModification:
2017_02_27-PM-04_25_01
Theory : list_1
Home
Index