Nuprl Lemma : member-firstn

[T:Type]. ∀L:T List. ∀n:ℕ||L|| 1. ∀x:T.  ((x ∈ firstn(n;L)) ⇐⇒ ∃i:ℕn. (x L[i] ∈ T))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) l_member: (x ∈ l) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: iff: ⇐⇒ Q exists: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k rev_implies:  Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T cand: c∧ B so_lambda: λ2x.t[x] uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  member_firstn int_seg_subtype_nat length_wf false_wf lelt_wf equal_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma l_member_wf firstn_wf less_than_wf exists_wf int_seg_wf add-is-int-iff list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality applyEquality natural_numberEquality addEquality cumulativity hypothesis independent_isectElimination sqequalRule independent_pairFormation productElimination independent_functionElimination dependent_pairFormation setElimination rename dependent_set_memberEquality unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination productEquality pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}n:\mBbbN{}||L||  +  1.  \mforall{}x:T.    ((x  \mmember{}  firstn(n;L))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (x  =  L[i]))



Date html generated: 2017_04_17-AM-07_51_53
Last ObjectModification: 2017_02_27-PM-04_25_01

Theory : list_1


Home Index