Nuprl Lemma : member_firstn
∀[T:Type]. ∀L:T List. ∀n:ℕ. ∀x:T. ((x ∈ firstn(n;L))
⇐⇒ ∃i:ℕ. ((i < n ∧ i < ||L||) ∧ (x = L[i] ∈ T)))
Proof
Definitions occuring in Statement :
firstn: firstn(n;as)
,
l_member: (x ∈ l)
,
select: L[n]
,
length: ||as||
,
list: T List
,
nat: ℕ
,
less_than: a < b
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
it: ⋅
,
nil: []
,
select: L[n]
,
so_apply: x[s1;s2;s3]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
firstn: firstn(n;as)
,
so_apply: x[s]
,
top: Top
,
false: False
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
implies: P
⇒ Q
,
not: ¬A
,
or: P ∨ Q
,
decidable: Dec(P)
,
ge: i ≥ j
,
uimplies: b supposing a
,
and: P ∧ Q
,
prop: ℙ
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
guard: {T}
,
nat_plus: ℕ+
,
cand: A c∧ B
,
cons: [a / b]
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
subtract: n - m
,
sq_type: SQType(T)
,
true: True
Lemmas referenced :
istype-universe,
list_wf,
istype-less_than,
length_of_cons_lemma,
list_ind_cons_lemma,
istype-base,
stuck-spread,
length_of_nil_lemma,
list_ind_nil_lemma,
istype-nat,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_and_lemma,
istype-int,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
full-omega-unsat,
decidable__le,
nat_properties,
select_wf,
equal_wf,
length_wf,
less_than_wf,
exists_wf,
firstn_wf,
l_member_wf,
iff_wf,
nat_wf,
all_wf,
list_induction,
null_nil_lemma,
btrue_wf,
member-implies-null-eq-bfalse,
nil_wf,
btrue_neq_bfalse,
satisfiable-full-omega-tt,
intformless_wf,
int_formula_prop_less_lemma,
equal-wf-T-base,
bnot_wf,
le_int_wf,
assert_wf,
int_subtype_base,
le_wf,
set_subtype_base,
bool_wf,
equal-wf-base,
lt_int_wf,
uiff_transitivity,
eqtt_to_assert,
assert_of_lt_int,
eqff_to_assert,
assert_functionality_wrt_uiff,
bnot_of_lt_int,
assert_of_le_int,
cons_wf,
istype-le,
int_term_value_subtract_lemma,
itermSubtract_wf,
subtract_wf,
cons_member,
false_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
intformeq_wf,
itermAdd_wf,
add-is-int-iff,
nat_plus_properties,
decidable__lt,
length_wf_nat,
add_nat_plus,
select-cons-tl,
add-associates,
add-swap,
add-commutes,
zero-add,
subtype_base_sq,
decidable__equal_int,
iff_weakening_equal,
subtype_rel_self,
select_cons_tl,
true_wf,
squash_wf
Rules used in proof :
universeEquality,
instantiate,
equalityIstype,
productIsType,
functionIsType,
baseClosed,
inhabitedIsType,
universeIsType,
independent_pairFormation,
voidElimination,
isect_memberEquality_alt,
int_eqEquality,
dependent_pairFormation_alt,
independent_functionElimination,
approximateComputation,
unionElimination,
natural_numberEquality,
dependent_functionElimination,
productElimination,
independent_isectElimination,
productEquality,
rename,
setElimination,
because_Cache,
hypothesis,
lambdaEquality_alt,
sqequalRule,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
thin,
cut,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
lambdaFormation,
cumulativity,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
lambdaEquality,
intEquality,
isect_memberEquality,
voidEquality,
computeAll,
applyEquality,
closedConclusion,
baseApply,
equalityElimination,
addEquality,
dependent_set_memberEquality_alt,
promote_hyp,
pointwiseFunctionality,
applyLambdaEquality,
imageElimination,
hyp_replacement,
inlFormation_alt,
imageMemberEquality,
inrFormation_alt
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. \mforall{}n:\mBbbN{}. \mforall{}x:T. ((x \mmember{} firstn(n;L)) \mLeftarrow{}{}\mRightarrow{} \mexists{}i:\mBbbN{}. ((i < n \mwedge{} i < ||L||) \mwedge{} (x = L[i])))
Date html generated:
2019_10_15-AM-10_22_27
Last ObjectModification:
2019_08_05-PM-01_56_49
Theory : list_1
Home
Index