Nuprl Lemma : mklist_defn2

[f:Top]. ∀[n:ℕ].  (mklist(n;f) mklist-general(n;λl.(f ||l||)))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) mklist-general: mklist-general(n;h) length: ||as|| nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: mklist-general: mklist-general(n;h) mklist: mklist(n;f) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf top_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int mklist-general-length le_wf primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination because_Cache equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity dependent_set_memberEquality

Latex:
\mforall{}[f:Top].  \mforall{}[n:\mBbbN{}].    (mklist(n;f)  \msim{}  mklist-general(n;\mlambda{}l.(f  ||l||)))



Date html generated: 2017_04_17-AM-07_41_30
Last ObjectModification: 2017_02_27-PM-04_14_54

Theory : list_1


Home Index