Nuprl Lemma : non-axiom-list

[T:Type]. ∀[L:T List].  L ∈ T × (T List) supposing isaxiom(L) ff


Proof




Definitions occuring in Statement :  list: List bfalse: ff btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] isaxiom: if Ax then otherwise b member: t ∈ T product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q nil: [] it: cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base bool_wf isaxiom_wf_list nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases btrue_neq_bfalse equal-wf-base product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity baseClosed applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination universeEquality independent_pairEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  \mmember{}  T  \mtimes{}  (T  List)  supposing  isaxiom(L)  =  ff



Date html generated: 2017_04_14-AM-09_25_57
Last ObjectModification: 2017_02_27-PM-04_00_14

Theory : list_1


Home Index