Nuprl Lemma : fshift_wf
∀[n,k:ℕ]. ∀[f:ℕn ⟶ ℕk]. ∀[x:ℕk]. (fshift(f;x) ∈ ℕn + 1 ⟶ ℕk)
Proof
Definitions occuring in Statement :
fshift: fshift(f;x)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fshift: fshift(f;x)
,
int_seg: {i..j-}
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
nat: ℕ
,
lelt: i ≤ j < k
,
nequal: a ≠ b ∈ T
,
ge: i ≥ j
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
Lemmas referenced :
eq_int_wf,
bool_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
int_seg_wf,
subtract_wf,
int_seg_properties,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
itermAdd_wf,
int_formula_prop_less_lemma,
int_term_value_add_lemma,
lelt_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
lambdaEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
natural_numberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
hypothesisEquality,
productElimination,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
applyEquality,
functionExtensionality,
dependent_set_memberEquality,
independent_pairFormation,
addEquality,
approximateComputation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidEquality,
axiomEquality,
Error :universeIsType,
Error :functionIsType,
functionEquality,
Error :inhabitedIsType
Latex:
\mforall{}[n,k:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}k]. \mforall{}[x:\mBbbN{}k]. (fshift(f;x) \mmember{} \mBbbN{}n + 1 {}\mrightarrow{} \mBbbN{}k)
Date html generated:
2019_06_20-PM-02_29_02
Last ObjectModification:
2018_09_26-PM-05_50_54
Theory : num_thy_1
Home
Index