Nuprl Lemma : fshift_wf

[n,k:ℕ]. ∀[f:ℕn ⟶ ℕk]. ∀[x:ℕk].  (fshift(f;x) ∈ ℕ1 ⟶ ℕk)


Proof




Definitions occuring in Statement :  fshift: fshift(f;x) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fshift: fshift(f;x) int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat: lelt: i ≤ j < k nequal: a ≠ b ∈  ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf subtract_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination hypothesisEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation addEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidEquality axiomEquality Error :universeIsType,  Error :functionIsType,  functionEquality Error :inhabitedIsType

Latex:
\mforall{}[n,k:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}k].  \mforall{}[x:\mBbbN{}k].    (fshift(f;x)  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}k)



Date html generated: 2019_06_20-PM-02_29_02
Last ObjectModification: 2018_09_26-PM-05_50_54

Theory : num_thy_1


Home Index