Nuprl Lemma : not-prime-square
∀[x:ℤ]. (¬prime(x * x))
Proof
Definitions occuring in Statement : 
prime: prime(a), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
multiply: n * m, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uimplies: b supposing a, 
atomic: atomic(a), 
and: P ∧ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
reducible: reducible(a), 
exists: ∃x:A. B[x], 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
subtype_rel: A ⊆r B, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
guard: {T}, 
squash: ↓T, 
true: True
Lemmas referenced : 
prime_imp_atomic, 
prime_wf, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
not_wf, 
assoced_wf, 
equal-wf-base-T, 
exists_wf, 
int_nzero_wf, 
assoced_functionality_wrt_assoced, 
multiply_functionality_wrt_assoced, 
assoced_weakening, 
itermMinus_wf, 
int_term_value_minus_lemma, 
decidable__equal_int, 
intformnot_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_term_value_mul_lemma, 
subtype_base_sq, 
equal_wf, 
squash_wf, 
true_wf, 
zero_ann_a, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
multiplyEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
intEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
applyEquality, 
baseClosed, 
productEquality, 
setElimination, 
rename, 
baseApply, 
closedConclusion, 
minusEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
inlFormation, 
imageMemberEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (\mneg{}prime(x  *  x))
Date html generated:
2019_06_20-PM-02_23_18
Last ObjectModification:
2018_09_22-PM-06_29_09
Theory : num_thy_1
Home
Index