Nuprl Lemma : twosquareinv_wf
∀[p:{2...}]. ∀[t:x:ℕ × y:ℕ × {z:ℕ| ((x * x) + (4 * y * z)) = p ∈ ℤ} ].
  (twosquareinv(t) ∈ x:ℕ × y:ℕ × {z:ℕ| ((x * x) + (4 * y * z)) = p ∈ ℤ} )
Proof
Definitions occuring in Statement : 
twosquareinv: twosquareinv(t)
, 
int_upper: {i...}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
twosquareinv: twosquareinv(t)
, 
spreadn: spread3, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
lt_int_wf, 
subtract_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
sq_stable__equal, 
nat_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
equal_wf, 
nat_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not_functionality_wrt_uiff, 
assert_wf, 
less_than_wf, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productElimination, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_pairEquality, 
dependent_set_memberEquality, 
addEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
natural_numberEquality, 
dependent_functionElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
multiplyEquality, 
setEquality, 
productEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
axiomEquality
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[t:x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  ].
    (twosquareinv(t)  \mmember{}  x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  )
Date html generated:
2019_06_20-PM-02_41_02
Last ObjectModification:
2018_09_24-PM-02_52_44
Theory : num_thy_1
Home
Index