Nuprl Lemma : twosquareinv_wf

[p:{2...}]. ∀[t:x:ℕ × y:ℕ × {z:ℕ((x x) (4 z)) p ∈ ℤ].
  (twosquareinv(t) ∈ x:ℕ × y:ℕ × {z:ℕ((x x) (4 z)) p ∈ ℤ)


Proof




Definitions occuring in Statement :  twosquareinv: twosquareinv(t) int_upper: {i...} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T twosquareinv: twosquareinv(t) spreadn: spread3 nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_stable: SqStable(P) squash: T guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  lt_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_lt_int sq_stable__equal nat_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma equal_wf nat_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf less_than_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productElimination thin extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis because_Cache lambdaFormation unionElimination equalityElimination independent_isectElimination dependent_pairEquality dependent_set_memberEquality addEquality intEquality equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed imageElimination natural_numberEquality dependent_functionElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation multiplyEquality setEquality productEquality promote_hyp instantiate cumulativity axiomEquality

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[t:x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  ].
    (twosquareinv(t)  \mmember{}  x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  )



Date html generated: 2019_06_20-PM-02_41_02
Last ObjectModification: 2018_09_24-PM-02_52_44

Theory : num_thy_1


Home Index