Nuprl Lemma : rec-value_subype_base
rec-value() ⊆r Base
Proof
Definitions occuring in Statement : 
rec-value: rec-value()
, 
subtype_rel: A ⊆r B
, 
base: Base
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
ext-eq: A ≡ B
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
atomic-values: atomic-values()
, 
Value: Value()
, 
pi2: snd(t)
, 
rec-value-height: rec-value-height(v)
, 
co-value-height: co-value-height(t)
, 
le: A ≤ B
, 
outl: outl(x)
, 
uiff: uiff(P;Q)
, 
outr: outr(x)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
istype-nat, 
rec-value-ext, 
subtract_nat_wf, 
rec-value-height_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-is-int-iff, 
false_wf, 
rec-value_wf, 
nat_wf, 
satisfiable-full-omega-tt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
productElimination, 
because_Cache, 
unionElimination, 
applyEquality, 
instantiate, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
promote_hyp, 
imageElimination, 
equalityElimination, 
Error :equalityIsType1, 
baseApply, 
closedConclusion, 
baseClosed, 
pointwiseFunctionality, 
addEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
intEquality, 
dependent_pairFormation, 
lemma_by_obid, 
lambdaEquality
Latex:
rec-value()  \msubseteq{}r  Base
Date html generated:
2019_06_20-PM-01_54_31
Last ObjectModification:
2018_10_17-PM-01_20_26
Theory : rec_values
Home
Index