Nuprl Lemma : rec-value_subype_base

rec-value() ⊆Base


Proof




Definitions occuring in Statement :  rec-value: rec-value() subtype_rel: A ⊆B base: Base
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) ext-eq: A ≡ B b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  atomic-values: atomic-values() Value: Value() pi2: snd(t) rec-value-height: rec-value-height(v) co-value-height: co-value-height(t) le: A ≤ B outl: outl(x) uiff: uiff(P;Q) outr: outr(x)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self istype-nat rec-value-ext subtract_nat_wf rec-value-height_wf itermAdd_wf int_term_value_add_lemma add-is-int-iff false_wf rec-value_wf nat_wf satisfiable-full-omega-tt
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  productElimination because_Cache unionElimination applyEquality instantiate applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption promote_hyp imageElimination equalityElimination Error :equalityIsType1,  baseApply closedConclusion baseClosed pointwiseFunctionality addEquality computeAll voidEquality isect_memberEquality intEquality dependent_pairFormation lemma_by_obid lambdaEquality

Latex:
rec-value()  \msubseteq{}r  Base



Date html generated: 2019_06_20-PM-01_54_31
Last ObjectModification: 2018_10_17-PM-01_20_26

Theory : rec_values


Home Index