Nuprl Lemma : least-equiv-is-equiv-1
∀[A,B:Type]. ∀[R:B ⟶ B ⟶ ℙ]. EquivRel(A;x,y.least-equiv(B;R) x y) supposing A ⊆r B
Proof
Definitions occuring in Statement :
least-equiv: least-equiv(A;R)
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
prop: ℙ
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ∧ Q
,
refl: Refl(T;x,y.E[x; y])
,
least-equiv: least-equiv(A;R)
,
cand: A c∧ B
,
sym: Sym(T;x,y.E[x; y])
,
implies: P
⇒ Q
,
trans: Trans(T;x,y.E[x; y])
,
transitive-reflexive-closure: R^*
,
transitive-closure: TC(R)
,
spreadn: spread3,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rel_path: rel_path(A;L;x;y)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
pi1: fst(t)
,
pi2: snd(t)
,
guard: {T}
,
append: as @ bs
,
infix_ap: x f y
Lemmas referenced :
rel_path_wf,
list_wf,
subtype_rel_self,
transitive-reflexive-closure_wf,
subtype_rel_wf,
istype-universe,
transitive-closure_wf,
reverse_wf,
or_wf,
map_wf,
list_induction,
all_wf,
list_ind_nil_lemma,
istype-void,
map_nil_lemma,
reverse_nil_lemma,
map_cons_lemma,
reverse-cons,
list_ind_cons_lemma,
append_wf,
cons_wf,
nil_wf,
pi1_wf,
pi2_wf,
length-reverse,
length-map,
istype-less_than,
length_wf,
transitive-reflexive-closure_transitivity
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
lambdaFormation_alt,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality_alt,
unionEquality,
applyEquality,
inhabitedIsType,
universeIsType,
hypothesis,
because_Cache,
productEquality,
instantiate,
independent_pairFormation,
functionIsType,
universeEquality,
inlFormation_alt,
unionElimination,
equalitySymmetry,
equalityTransitivity,
inrFormation_alt,
equalityIstype,
dependent_functionElimination,
independent_functionElimination,
rename,
setElimination,
dependent_set_memberEquality_alt,
productElimination,
dependent_pairEquality_alt,
inrEquality_alt,
inlEquality_alt,
unionIsType,
productIsType,
functionEquality,
isect_memberEquality_alt,
voidElimination,
natural_numberEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[R:B {}\mrightarrow{} B {}\mrightarrow{} \mBbbP{}]. EquivRel(A;x,y.least-equiv(B;R) x y) supposing A \msubseteq{}r B
Date html generated:
2019_10_15-AM-10_24_56
Last ObjectModification:
2019_08_22-AM-10_51_30
Theory : relations2
Home
Index