Nuprl Lemma : least-equiv-is-equiv-1

[A,B:Type].  ∀[R:B ⟶ B ⟶ ℙ]. EquivRel(A;x,y.least-equiv(B;R) y) supposing A ⊆B


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] prop: or: P ∨ Q subtype_rel: A ⊆B equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) least-equiv: least-equiv(A;R) cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q trans: Trans(T;x,y.E[x; y]) transitive-reflexive-closure: R^* transitive-closure: TC(R) spreadn: spread3 so_lambda: λ2x.t[x] so_apply: x[s] rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) guard: {T} append: as bs infix_ap: y
Lemmas referenced :  rel_path_wf list_wf subtype_rel_self transitive-reflexive-closure_wf subtype_rel_wf istype-universe transitive-closure_wf reverse_wf or_wf map_wf list_induction all_wf list_ind_nil_lemma istype-void map_nil_lemma reverse_nil_lemma map_cons_lemma reverse-cons list_ind_cons_lemma append_wf cons_wf nil_wf pi1_wf pi2_wf length-reverse length-map istype-less_than length_wf transitive-reflexive-closure_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt unionEquality applyEquality inhabitedIsType universeIsType hypothesis because_Cache productEquality instantiate independent_pairFormation functionIsType universeEquality inlFormation_alt unionElimination equalitySymmetry equalityTransitivity inrFormation_alt equalityIstype dependent_functionElimination independent_functionElimination rename setElimination dependent_set_memberEquality_alt productElimination dependent_pairEquality_alt inrEquality_alt inlEquality_alt unionIsType productIsType functionEquality isect_memberEquality_alt voidElimination natural_numberEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  EquivRel(A;x,y.least-equiv(B;R)  x  y)  supposing  A  \msubseteq{}r  B



Date html generated: 2019_10_15-AM-10_24_56
Last ObjectModification: 2019_08_22-AM-10_51_30

Theory : relations2


Home Index