Nuprl Lemma : rel-star-iff-rel-plus-or

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x (R^*) ⇐⇒ (x R+ y) ∨ (x y ∈ T))


Proof




Definitions occuring in Statement :  rel_plus: R+ rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  rel_plus: R+ rel_star: R^* infix_ap: y uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q or: P ∨ Q subtype_rel: A ⊆B exists: x:A. B[x] nat: decidable: Dec(P) uimplies: supposing a sq_type: SQType(T) guard: {T} nat_plus: + le: A ≤ B not: ¬A false: False uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True subtract: m rel_exp: R^n eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  exists_wf nat_wf rel_exp_wf or_wf nat_plus_wf nat_plus_subtype_nat equal_wf decidable__equal_int subtype_base_sq int_subtype_base decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality unionElimination functionEquality cumulativity universeEquality productElimination dependent_functionElimination setElimination rename natural_numberEquality instantiate intEquality independent_isectElimination because_Cache independent_functionElimination inrFormation inlFormation dependent_pairFormation dependent_set_memberEquality voidElimination addEquality isect_memberEquality voidEquality minusEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_star(T;  R)  y  \mLeftarrow{}{}\mRightarrow{}  (x  R\msupplus{}  y)  \mvee{}  (x  =  y))



Date html generated: 2016_05_14-PM-03_52_46
Last ObjectModification: 2015_12_26-PM-06_57_02

Theory : relations2


Home Index