Nuprl Lemma : strongwf-implies

[T:Type]. ∀[R:T ⟶ T ⟶ Type].  (SWellFounded(R[x;y])  WellFnd{i}(T;x,y.R[x;y]))


Proof




Definitions occuring in Statement :  strongwellfounded: SWellFounded(R[x; y]) wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) strongwellfounded: SWellFounded(R[x; y]) uall: [x:A]. B[x] implies:  Q guard: {T} exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] nat: all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) ge: i ≥  less_than: a < b squash: T
Lemmas referenced :  all_wf exists_wf nat_wf less_than_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf equal_wf int_seg_subtype_nat decidable__lt lelt_wf set_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality functionEquality applyEquality functionExtensionality hypothesis universeEquality because_Cache setElimination rename natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination addLevel equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality independent_functionElimination addEquality imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (SWellFounded(R[x;y])  {}\mRightarrow{}  WellFnd\{i\}(T;x,y.R[x;y]))



Date html generated: 2017_04_17-AM-09_26_36
Last ObjectModification: 2017_02_27-PM-05_27_54

Theory : relations2


Home Index