Nuprl Lemma : strongwf-implies
∀[T:Type]. ∀[R:T ⟶ T ⟶ Type].  (SWellFounded(R[x;y]) 
⇒ WellFnd{i}(T;x,y.R[x;y]))
Proof
Definitions occuring in Statement : 
strongwellfounded: SWellFounded(R[x; y])
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
strongwellfounded: SWellFounded(R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
all_wf, 
exists_wf, 
nat_wf, 
less_than_wf, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
int_seg_subtype, 
false_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
equal_wf, 
int_seg_subtype_nat, 
decidable__lt, 
lelt_wf, 
set_wf, 
primrec-wf2, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
universeEquality, 
because_Cache, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
addLevel, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
independent_functionElimination, 
addEquality, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (SWellFounded(R[x;y])  {}\mRightarrow{}  WellFnd\{i\}(T;x,y.R[x;y]))
Date html generated:
2017_04_17-AM-09_26_36
Last ObjectModification:
2017_02_27-PM-05_27_54
Theory : relations2
Home
Index