Nuprl Lemma : bag-append-no-repeats1
∀[T:Type]. ∀[as,bs:bag(T)].
  bag-no-repeats(T;as + bs) supposing bag-no-repeats(T;as) ∧ bag-no-repeats(T;bs) ∧ (∀z:T. (z ↓∈ as 
⇒ (¬z ↓∈ bs)))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
bag-append: as + bs
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
not: ¬A
, 
bag-member: x ↓∈ bs
, 
false: False
Lemmas referenced : 
bag_to_squash_list, 
all_wf, 
bag-member_wf, 
not_wf, 
bag-no-repeats_wf, 
list-subtype-bag, 
append_wf, 
equal_wf, 
bag_wf, 
no_repeats_wf, 
squash_wf, 
exists_wf, 
list_wf, 
bag-append_wf, 
no_repeats-append, 
sq_stable__no_repeats, 
member_wf, 
permutation_wf, 
no_repeats_functionality_wrt_permutation, 
permutation_inversion, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
imageElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality, 
independent_functionElimination, 
pertypeElimination, 
dependent_functionElimination, 
lambdaFormation, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].
    bag-no-repeats(T;as  +  bs) 
    supposing  bag-no-repeats(T;as)  \mwedge{}  bag-no-repeats(T;bs)  \mwedge{}  (\mforall{}z:T.  (z  \mdownarrow{}\mmember{}  as  {}\mRightarrow{}  (\mneg{}z  \mdownarrow{}\mmember{}  bs)))
Date html generated:
2017_10_01-AM-08_59_04
Last ObjectModification:
2017_07_26-PM-04_41_08
Theory : bags
Home
Index