Nuprl Lemma : bag-filter-is-nil

[T:Type]. ∀[p:T ⟶ 𝔹].  ∀[bs:bag(T)]. ([x∈bs|p[x]] []) supposing ∀x:T. (¬↑p[x])


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag: bag(T) nil: [] assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q bag-filter: [x∈b|p[x]] l_all: (∀x∈L.P[x]) all: x:A. B[x] not: ¬A implies:  Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T cons: [a b]
Lemmas referenced :  bag_wf all_wf not_wf assert_wf bool_wf list_wf filter_is_nil nil_wf equal-wf-base permutation_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf list-cases product_subtype_list null_nil_lemma btrue_wf null_cons_lemma bfalse_wf and_wf equal_wf null_wf btrue_neq_bfalse equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality because_Cache lambdaEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry functionEquality universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination independent_isectElimination productEquality lambdaFormation setElimination rename natural_numberEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination promote_hyp hypothesis_subsumption dependent_set_memberEquality applyLambdaEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    \mforall{}[bs:bag(T)].  ([x\mmember{}bs|p[x]]  \msim{}  [])  supposing  \mforall{}x:T.  (\mneg{}\muparrow{}p[x])



Date html generated: 2017_10_01-AM-08_45_20
Last ObjectModification: 2017_07_26-PM-04_30_40

Theory : bags


Home Index