Nuprl Lemma : bag-filter-is-nil
∀[T:Type]. ∀[p:T ⟶ 𝔹].  ∀[bs:bag(T)]. ([x∈bs|p[x]] ~ []) supposing ∀x:T. (¬↑p[x])
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
nil: []
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
bag-filter: [x∈b|p[x]]
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
cons: [a / b]
Lemmas referenced : 
bag_wf, 
all_wf, 
not_wf, 
assert_wf, 
bool_wf, 
list_wf, 
filter_is_nil, 
nil_wf, 
equal-wf-base, 
permutation_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
list-cases, 
product_subtype_list, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
bfalse_wf, 
and_wf, 
equal_wf, 
null_wf, 
btrue_neq_bfalse, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
independent_isectElimination, 
productEquality, 
lambdaFormation, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
applyLambdaEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    \mforall{}[bs:bag(T)].  ([x\mmember{}bs|p[x]]  \msim{}  [])  supposing  \mforall{}x:T.  (\mneg{}\muparrow{}p[x])
Date html generated:
2017_10_01-AM-08_45_20
Last ObjectModification:
2017_07_26-PM-04_30_40
Theory : bags
Home
Index