Nuprl Lemma : bag-mapfilter-fast_wf

[A,B:Type]. ∀[bs:bag(A)]. ∀[P:A ⟶ 𝔹]. ∀[f:{x:A| ↑P[x]}  ⟶ B].  (bag-mapfilter-fast(f;P;bs) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-mapfilter-fast: bag-mapfilter-fast(f;P;bs) bag: bag(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-mapfilter-fast: bag-mapfilter-fast(f;P;bs) so_lambda: λ2y.t[x; y] so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: bfalse: ff so_apply: x[s1;s2] top: Top exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bag-accum_wf bag_wf empty-bag_wf bool_wf eqtt_to_assert cons-bag_wf assert_wf equal_wf cons-bag-as-append eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag-append_wf squash_wf true_wf bag-append-comm single-bag_wf iff_weakening_equal bag-append-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache lambdaEquality applyEquality functionExtensionality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination setEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isect_memberEquality voidElimination voidEquality dependent_pairFormation promote_hyp instantiate axiomEquality functionEquality universeEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  \muparrow{}P[x]\}    {}\mrightarrow{}  B].
    (bag-mapfilter-fast(f;P;bs)  \mmember{}  bag(B))



Date html generated: 2017_10_01-AM-08_58_25
Last ObjectModification: 2017_07_26-PM-04_40_24

Theory : bags


Home Index