Nuprl Lemma : equal-bag-size-le1
∀[T:Type]. ∀[as,bs:bag(T)].
  uiff(as = bs ∈ bag(T);(as = {} ∈ bag(T) 
⇐⇒ bs = {} ∈ bag(T))
  ∧ ((#(as) = 1 ∈ ℤ) 
⇒ (#(bs) = 1 ∈ ℤ) 
⇒ (only(as) = only(bs) ∈ T))) 
  supposing (#(as) ≤ 1) ∧ (#(bs) ≤ 1)
Proof
Definitions occuring in Statement : 
bag-only: only(bs)
, 
bag-size: #(bs)
, 
empty-bag: {}
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
true: True
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
equal-wf-T-base, 
bag_wf, 
and_wf, 
equal_wf, 
bag-only_wf, 
bag-size_wf, 
decidable__lt, 
iff_wf, 
le_wf, 
decidable__le, 
nat_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
empty-bag_wf, 
bag-size-zero, 
bag_size_empty_lemma, 
less_than_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
single-bag_wf, 
bag-size-one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
hyp_replacement, 
intEquality, 
applyEquality, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
natural_numberEquality, 
unionElimination, 
productEquality, 
functionEquality, 
isect_memberEquality, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].
    uiff(as  =  bs;(as  =  \{\}  \mLeftarrow{}{}\mRightarrow{}  bs  =  \{\})  \mwedge{}  ((\#(as)  =  1)  {}\mRightarrow{}  (\#(bs)  =  1)  {}\mRightarrow{}  (only(as)  =  only(bs)))) 
    supposing  (\#(as)  \mleq{}  1)  \mwedge{}  (\#(bs)  \mleq{}  1)
Date html generated:
2017_10_01-AM-08_52_42
Last ObjectModification:
2017_07_26-PM-04_34_11
Theory : bags
Home
Index