Nuprl Lemma : equal-bag-size-le1

[T:Type]. ∀[as,bs:bag(T)].
  uiff(as bs ∈ bag(T);(as {} ∈ bag(T) ⇐⇒ bs {} ∈ bag(T))
  ∧ ((#(as) 1 ∈ ℤ (#(bs) 1 ∈ ℤ (only(as) only(bs) ∈ T))) 
  supposing (#(as) ≤ 1) ∧ (#(bs) ≤ 1)


Proof




Definitions occuring in Statement :  bag-only: only(bs) bag-size: #(bs) empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B iff: ⇐⇒ Q implies:  Q and: P ∧ Q natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q subtype_rel: A ⊆B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top true: True le: A ≤ B less_than': less_than'(a;b) guard: {T} cand: c∧ B
Lemmas referenced :  equal-wf-T-base bag_wf and_wf equal_wf bag-only_wf bag-size_wf decidable__lt iff_wf le_wf decidable__le nat_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf empty-bag_wf bag-size-zero bag_size_empty_lemma less_than_wf squash_wf true_wf iff_weakening_equal decidable__equal_int intformeq_wf int_formula_prop_eq_lemma single-bag_wf bag-size-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation lambdaFormation equalityTransitivity equalitySymmetry hypothesis extract_by_obid isectElimination cumulativity hypothesisEquality baseClosed because_Cache dependent_set_memberEquality applyLambdaEquality setElimination rename independent_isectElimination hyp_replacement intEquality applyEquality sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality natural_numberEquality unionElimination productEquality functionEquality isect_memberEquality imageElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll independent_functionElimination imageMemberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].
    uiff(as  =  bs;(as  =  \{\}  \mLeftarrow{}{}\mRightarrow{}  bs  =  \{\})  \mwedge{}  ((\#(as)  =  1)  {}\mRightarrow{}  (\#(bs)  =  1)  {}\mRightarrow{}  (only(as)  =  only(bs)))) 
    supposing  (\#(as)  \mleq{}  1)  \mwedge{}  (\#(bs)  \mleq{}  1)



Date html generated: 2017_10_01-AM-08_52_42
Last ObjectModification: 2017_07_26-PM-04_34_11

Theory : bags


Home Index