Nuprl Lemma : assert-int-list-member
∀i:ℤ. ∀xs:ℤ List.  (↑int-list-member(i;xs) 
⇐⇒ (i ∈ xs))
Proof
Definitions occuring in Statement : 
int-list-member: int-list-member(i;xs)
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
int-list-member: int-list-member(i;xs)
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
or: P ∨ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
list_induction, 
iff_wf, 
assert_wf, 
int-list-member_wf, 
l_member_wf, 
list_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
false_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
equal-wf-base, 
or_wf, 
int_subtype_base, 
cons_member, 
cons_wf, 
bor_wf, 
eq_int_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
because_Cache, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
applyEquality, 
addLevel, 
impliesFunctionality, 
orFunctionality
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}xs:\mBbbZ{}  List.    (\muparrow{}int-list-member(i;xs)  \mLeftarrow{}{}\mRightarrow{}  (i  \mmember{}  xs))
Date html generated:
2018_05_21-PM-07_31_48
Last ObjectModification:
2017_07_26-PM-05_07_00
Theory : general
Home
Index