Nuprl Lemma : decidable__fun-connected
∀[T:Type]. ∀f:T ⟶ T. (retraction(T;f) ⇒ (∀x,y:T.  Dec(x = y ∈ T)) ⇒ (∀x,y:T.  Dec(x is f*(y))))
Proof
Definitions occuring in Statement : 
retraction: retraction(T;f), 
fun-connected: y is f*(x), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
retraction: retraction(T;f), 
exists: ∃x:A. B[x], 
nat: ℕ, 
guard: {T}, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q)
Lemmas referenced : 
all_wf, 
decidable_wf, 
equal_wf, 
retraction_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
less_than_wf, 
nat_wf, 
subtract_wf, 
fun-connected_wf, 
set_wf, 
primrec-wf2, 
fun-connected_weakening_eq, 
not_wf, 
fun-connected-fixedpoint, 
decidable__lt, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
fun-connected-step, 
fun-connected_transitivity, 
fun-connected-step-back, 
add_nat_wf, 
false_wf, 
le_wf, 
decidable__le, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
functionEquality, 
universeEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
because_Cache, 
unionElimination, 
inlFormation, 
inrFormation, 
independent_functionElimination, 
imageElimination, 
dependent_set_memberEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  (retraction(T;f)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  is  f*(y))))
Date html generated:
2018_05_21-PM-07_48_21
Last ObjectModification:
2017_07_26-PM-05_26_08
Theory : general
Home
Index