Nuprl Lemma : decidable__fun-connected

[T:Type]. ∀f:T ⟶ T. (retraction(T;f)  (∀x,y:T.  Dec(x y ∈ T))  (∀x,y:T.  Dec(x is f*(y))))


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) fun-connected: is f*(x) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] retraction: retraction(T;f) exists: x:A. B[x] nat: guard: {T} ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q)
Lemmas referenced :  all_wf decidable_wf equal_wf retraction_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf less_than_wf nat_wf subtract_wf fun-connected_wf set_wf primrec-wf2 fun-connected_weakening_eq not_wf fun-connected-fixedpoint decidable__lt intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma fun-connected-step fun-connected_transitivity fun-connected-step-back add_nat_wf false_wf le_wf decidable__le add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality hypothesis functionExtensionality applyEquality functionEquality universeEquality productElimination equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache unionElimination inlFormation inrFormation independent_functionElimination imageElimination dependent_set_memberEquality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  (retraction(T;f)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  is  f*(y))))



Date html generated: 2018_05_21-PM-07_48_21
Last ObjectModification: 2017_07_26-PM-05_26_08

Theory : general


Home Index