Nuprl Lemma : eq_seq_wf
∀[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  (eq_seq(eq) ∈ (k:ℕ × (ℕk ⟶ T)) ⟶ (k:ℕ × (ℕk ⟶ T)) ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
eq_seq: eq_seq(eq)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_seq: eq_seq(eq)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than: a < b
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
primrec_wf, 
btrue_wf, 
int_seg_wf, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lelt_wf, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
bfalse_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
spreadEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
because_Cache, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
promote_hyp, 
instantiate, 
productEquality, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (eq\_seq(eq)  \mmember{}  (k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  T))  {}\mrightarrow{}  (k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  T))  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2018_05_21-PM-07_42_00
Last ObjectModification:
2017_07_26-PM-05_15_52
Theory : general
Home
Index