Nuprl Lemma : eq_seq_wf

[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  (eq_seq(eq) ∈ (k:ℕ × (ℕk ⟶ T)) ⟶ (k:ℕ × (ℕk ⟶ T)) ⟶ 𝔹)


Proof




Definitions occuring in Statement :  eq_seq: eq_seq(eq) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq_seq: eq_seq(eq) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: le: A ≤ B less_than: a < b bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int primrec_wf btrue_wf int_seg_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bfalse_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality spreadEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule applyEquality functionExtensionality cumulativity natural_numberEquality because_Cache dependent_set_memberEquality independent_pairFormation dependent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination promote_hyp instantiate productEquality functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (eq\_seq(eq)  \mmember{}  (k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  T))  {}\mrightarrow{}  (k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  T))  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2018_05_21-PM-07_42_00
Last ObjectModification: 2017_07_26-PM-05_15_52

Theory : general


Home Index