Nuprl Lemma : member-partial-permutations-list

n:ℕ+. ∀i:ℤ. ∀f:ℕn →⟶ ℕn.  (f ∈ partial-permutations-list(n;i)) supposing (f (n 1)) i ∈ ℤ


Proof




Definitions occuring in Statement :  partial-permutations-list: partial-permutations-list(n;i) injection: A →⟶ B l_member: (x ∈ l) int_seg: {i..j-} nat_plus: + uimplies: supposing a all: x:A. B[x] apply: a subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k nat_plus: + int_seg: {i..j-} injection: A →⟶ B uall: [x:A]. B[x] partial-permutations-list: partial-permutations-list(n;i) member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  nat_plus_wf int_subtype_base equal-wf-T-base assert_of_eq_int member-permutations-list l_member_wf all_wf no_repeats_wf list_wf nat_plus_subtype_nat permutations-list_wf int_seg_wf injection_wf lelt_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties subtract_wf eq_int_wf member_filter
Rules used in proof :  productElimination productEquality setEquality sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination hypothesisEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality setElimination applyEquality lambdaEquality dependent_functionElimination because_Cache isectElimination sqequalHypSubstitution extract_by_obid rename thin hypothesis axiomEquality introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}i:\mBbbZ{}.  \mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.    (f  \mmember{}  partial-permutations-list(n;i))  supposing  (f  (n  -  1))  =  i



Date html generated: 2018_05_21-PM-08_23_56
Last ObjectModification: 2017_12_15-PM-00_03_30

Theory : general


Home Index