Nuprl Lemma : member-partial-permutations-list
∀n:ℕ+. ∀i:ℤ. ∀f:ℕn →⟶ ℕn.  (f ∈ partial-permutations-list(n;i)) supposing (f (n - 1)) = i ∈ ℤ
Proof
Definitions occuring in Statement : 
partial-permutations-list: partial-permutations-list(n;i), 
injection: A →⟶ B, 
l_member: (x ∈ l), 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
apply: f a, 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
implies: P ⇒ Q, 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
and: P ∧ Q, 
lelt: i ≤ j < k, 
nat_plus: ℕ+, 
int_seg: {i..j-}, 
injection: A →⟶ B, 
uall: ∀[x:A]. B[x], 
partial-permutations-list: partial-permutations-list(n;i), 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_plus_wf, 
int_subtype_base, 
equal-wf-T-base, 
assert_of_eq_int, 
member-permutations-list, 
l_member_wf, 
all_wf, 
no_repeats_wf, 
list_wf, 
nat_plus_subtype_nat, 
permutations-list_wf, 
int_seg_wf, 
injection_wf, 
lelt_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
subtract_wf, 
eq_int_wf, 
member_filter
Rules used in proof : 
productElimination, 
productEquality, 
setEquality, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
hypothesisEquality, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
setElimination, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}i:\mBbbZ{}.  \mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.    (f  \mmember{}  partial-permutations-list(n;i))  supposing  (f  (n  -  1))  =  i
Date html generated:
2018_05_21-PM-08_23_56
Last ObjectModification:
2017_12_15-PM-00_03_30
Theory : general
Home
Index