Nuprl Lemma : mul-initial-seg-property2

f:ℕ ⟶ ℕ(∃n:ℕ((f n) 0 ∈ ℤ⇐⇒ ∃n:ℕ. ∀m:ℕ(mul-initial-seg(f) m) 0 ∈ ℤ supposing n ≤ m)


Proof




Definitions occuring in Statement :  mul-initial-seg: mul-initial-seg(f) nat: uimplies: supposing a le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] rev_implies:  Q uimplies: supposing a exists: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top cand: c∧ B mul-initial-seg: mul-initial-seg(f) upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff sq_type: SQType(T) guard: {T} true: True squash: T nat_plus: +
Lemmas referenced :  exists_wf nat_wf equal-wf-T-base all_wf isect_wf le_wf mul-initial-seg_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf mul-initial-seg-property decidable__lt intformless_wf int_formula_prop_less_lemma less_than_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_wf primrec-wf2 map_nil_lemma reduce_nil_lemma subtype_base_sq int_subtype_base false_wf equal-wf-base equal_wf squash_wf true_wf mul-initial-seg-step iff_weakening_equal int_entire
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality intEquality applyEquality functionExtensionality hypothesisEquality setElimination rename baseClosed because_Cache functionEquality productElimination dependent_pairFormation dependent_set_memberEquality addEquality natural_numberEquality dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll isect_memberFormation independent_functionElimination productEquality instantiate addLevel cumulativity levelHypothesis promote_hyp imageElimination universeEquality equalityUniverse imageMemberEquality

Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mexists{}n:\mBbbN{}.  ((f  n)  =  0)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}.  (mul-initial-seg(f)  m)  =  0  supposing  n  \mleq{}  m)



Date html generated: 2018_05_21-PM-08_38_05
Last ObjectModification: 2017_07_26-PM-06_02_23

Theory : general


Home Index