Nuprl Lemma : mul-initial-seg-property2
∀f:ℕ ⟶ ℕ. (∃n:ℕ. ((f n) = 0 ∈ ℤ) 
⇐⇒ ∃n:ℕ. ∀m:ℕ. (mul-initial-seg(f) m) = 0 ∈ ℤ supposing n ≤ m)
Proof
Definitions occuring in Statement : 
mul-initial-seg: mul-initial-seg(f)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
cand: A c∧ B
, 
mul-initial-seg: mul-initial-seg(f)
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
nat_plus: ℕ+
Lemmas referenced : 
exists_wf, 
nat_wf, 
equal-wf-T-base, 
all_wf, 
isect_wf, 
le_wf, 
mul-initial-seg_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
mul-initial-seg-property, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
less_than_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_wf, 
primrec-wf2, 
map_nil_lemma, 
reduce_nil_lemma, 
subtype_base_sq, 
int_subtype_base, 
false_wf, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
mul-initial-seg-step, 
iff_weakening_equal, 
int_entire
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
setElimination, 
rename, 
baseClosed, 
because_Cache, 
functionEquality, 
productElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
isect_memberFormation, 
independent_functionElimination, 
productEquality, 
instantiate, 
addLevel, 
cumulativity, 
levelHypothesis, 
promote_hyp, 
imageElimination, 
universeEquality, 
equalityUniverse, 
imageMemberEquality
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mexists{}n:\mBbbN{}.  ((f  n)  =  0)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}.  (mul-initial-seg(f)  m)  =  0  supposing  n  \mleq{}  m)
Date html generated:
2018_05_21-PM-08_38_05
Last ObjectModification:
2017_07_26-PM-06_02_23
Theory : general
Home
Index