Nuprl Lemma : no_repeats-partial-permutations-list

[n:ℕ+]. ∀[i:ℤ].  no_repeats(ℕn →⟶ ℕn;partial-permutations-list(n;i))


Proof




Definitions occuring in Statement :  partial-permutations-list: partial-permutations-list(n;i) injection: A →⟶ B no_repeats: no_repeats(T;l) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] natural_number: $n int:
Definitions unfolded in proof :  top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} injection: A →⟶ B implies:  Q all: x:A. B[x] so_apply: x[s] prop: and: P ∧ Q so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B partial-permutations-list: partial-permutations-list(n;i) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_plus_wf partial-permutations-list_wf no_repeats_witness equal_wf lelt_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties subtract_wf eq_int_wf no_repeats_filter l_member_wf all_wf no_repeats_wf int_seg_wf injection_wf list_wf set_wf nat_plus_subtype_nat permutations-list_wf
Rules used in proof :  equalitySymmetry equalityTransitivity voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality productElimination lambdaFormation productEquality lambdaEquality because_Cache rename setElimination natural_numberEquality sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[i:\mBbbZ{}].    no\_repeats(\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n;partial-permutations-list(n;i))



Date html generated: 2018_05_21-PM-08_23_44
Last ObjectModification: 2017_12_15-AM-11_41_53

Theory : general


Home Index