Nuprl Lemma : retraction-fun-path-before

[T:Type]. ∀f:T ⟶ T. (retraction(T;f)  (∀L:T List. ∀x,y,a,b:T.  before b ∈  f+(b) supposing x=f*(y) via L))


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) strict-fun-connected: f+(x) fun-path: y=f*(x) via L l_before: before y ∈ l list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T fun-path: y=f*(x) via L and: P ∧ Q not: ¬A false: False int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than: a < b squash: T strict-fun-connected: f+(x) uiff: uiff(P;Q)
Lemmas referenced :  member-less_than length_wf equal_wf select_wf int_seg_properties subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma int_seg_wf fun-path-before l_before_wf fun-path_wf list_wf retraction_wf no_repeats_iff fun-path-no_repeats
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination natural_numberEquality cumulativity hypothesisEquality hypothesis independent_isectElimination axiomEquality lambdaEquality dependent_functionElimination voidElimination equalityTransitivity equalitySymmetry because_Cache addEquality setElimination rename unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination functionExtensionality applyEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        (retraction(T;f)
        {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x,y,a,b:T.    a  before  b  \mmember{}  L  {}\mRightarrow{}  a  =  f+(b)  supposing  x=f*(y)  via  L))



Date html generated: 2018_05_21-PM-07_47_40
Last ObjectModification: 2017_07_26-PM-05_25_36

Theory : general


Home Index