Nuprl Lemma : fun-path-no_repeats

[T:Type]. ∀[f:T ⟶ T].  ∀[L:T List]. ∀[x,y:T].  no_repeats(T;L) supposing x=f*(y) via supposing retraction(T;f)


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) fun-path: y=f*(x) via L no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a retraction: retraction(T;f) exists: x:A. B[x] implies:  Q prop: all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T subtype_rel: A ⊆B nat: so_apply: x[s] so_apply: x[s1;s2;s3] uiff: uiff(P;Q) sq_type: SQType(T) select: L[n] cons: [a b] ge: i ≥  le: A ≤ B true: True iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) l_before: before y ∈ l sublist: L1 ⊆ L2 increasing: increasing(f;k)
Lemmas referenced :  no_repeats_witness fun-path_wf list_wf retraction_wf fun-path-induction all_wf int_seg_wf length_wf less_than_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma nat_wf length_of_cons_lemma length_of_nil_lemma cons_wf nil_wf itermAdd_wf int_term_value_add_lemma add-is-int-iff false_wf member-less_than not_wf equal_wf decidable__equal_int subtype_base_sq int_subtype_base squash_wf true_wf select_cons_tl intformeq_wf int_formula_prop_eq_lemma non_neg_length iff_weakening_equal subtract_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf le_weakening2 no_repeats_iff length_wf_nat nat_properties l_before_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality independent_functionElimination hypothesis cumulativity functionExtensionality applyEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality dependent_functionElimination lambdaEquality natural_numberEquality setElimination rename independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination lambdaFormation addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed instantiate imageMemberEquality hyp_replacement applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}[L:T  List].  \mforall{}[x,y:T].    no\_repeats(T;L)  supposing  x=f*(y)  via  L  supposing  retraction(T;f)



Date html generated: 2018_05_21-PM-07_47_31
Last ObjectModification: 2017_07_26-PM-05_25_26

Theory : general


Home Index