Nuprl Lemma : fun-path-no_repeats
∀[T:Type]. ∀[f:T ⟶ T].  ∀[L:T List]. ∀[x,y:T].  no_repeats(T;L) supposing x=f*(y) via L supposing retraction(T;f)
Proof
Definitions occuring in Statement : 
retraction: retraction(T;f)
, 
fun-path: y=f*(x) via L
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
retraction: retraction(T;f)
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_apply: x[s1;s2;s3]
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
select: L[n]
, 
cons: [a / b]
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
l_before: x before y ∈ l
, 
sublist: L1 ⊆ L2
, 
increasing: increasing(f;k)
Lemmas referenced : 
no_repeats_witness, 
fun-path_wf, 
list_wf, 
retraction_wf, 
fun-path-induction, 
all_wf, 
int_seg_wf, 
length_wf, 
less_than_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
nat_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
cons_wf, 
nil_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-is-int-iff, 
false_wf, 
member-less_than, 
not_wf, 
equal_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
squash_wf, 
true_wf, 
select_cons_tl, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
non_neg_length, 
iff_weakening_equal, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
le_weakening2, 
no_repeats_iff, 
length_wf_nat, 
nat_properties, 
l_before_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
lambdaFormation, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
instantiate, 
imageMemberEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}[L:T  List].  \mforall{}[x,y:T].    no\_repeats(T;L)  supposing  x=f*(y)  via  L  supposing  retraction(T;f)
Date html generated:
2018_05_21-PM-07_47_31
Last ObjectModification:
2017_07_26-PM-05_25_26
Theory : general
Home
Index