Nuprl Lemma : fun-path-induction
∀[T:Type]
  ∀f:T ⟶ T
    ∀[R:T ⟶ T ⟶ (T List) ⟶ ℙ]
      ((∀x:T. R[x;x;[x]])
      
⇒ (∀L:T List. ∀x,y,z:T.  (R[y;z;[y / L]] 
⇒ R[x;z;[x; [y / L]]]) supposing ((¬(x = y ∈ T)) and (x = (f y) ∈ T)))
      
⇒ {∀L:T List. ∀x,y:T.  R[x;y;L] supposing x=f*(y) via L})
Proof
Definitions occuring in Statement : 
fun-path: y=f*(x) via L
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2;s3]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
fun-path: y=f*(x) via L
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
false: False
, 
not: ¬A
, 
select: L[n]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
cons: [a / b]
, 
ge: i ≥ j 
, 
le: A ≤ B
Lemmas referenced : 
list_induction, 
all_wf, 
isect_wf, 
fun-path_wf, 
list_wf, 
member-less_than, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
nil_wf, 
length_wf, 
cons_wf, 
equal_wf, 
select_wf, 
length_of_cons_lemma, 
int_seg_properties, 
subtract_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
add-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
int_seg_wf, 
fun-path-cons, 
less_than_wf, 
not_wf, 
list-cases, 
product_subtype_list, 
reduce_hd_cons_lemma, 
non_neg_length, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
imageElimination, 
voidElimination, 
independent_isectElimination, 
axiomEquality, 
dependent_functionElimination, 
rename, 
baseClosed, 
isect_memberEquality, 
voidEquality, 
because_Cache, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
setElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
functionEquality, 
universeEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:T.  R[x;x;[x]])
            {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x,y,z:T.
                        (R[y;z;[y  /  L]]  {}\mRightarrow{}  R[x;z;[x;  [y  /  L]]])  supposing  ((\mneg{}(x  =  y))  and  (x  =  (f  y))))
            {}\mRightarrow{}  \{\mforall{}L:T  List.  \mforall{}x,y:T.    R[x;y;L]  supposing  x=f*(y)  via  L\})
Date html generated:
2018_05_21-PM-07_44_34
Last ObjectModification:
2017_07_26-PM-05_22_07
Theory : general
Home
Index